GENERALIZED INVERSE CLASSIFICATION

SDM '17

Michael T. Lash¹, Qihang Lin², W. Nick Street², Jennifer G. Robinson³, and Jeffrey Ohlmann²

¹Department of Computer Science, ²Department of Management Sciences, ³Department of Epidemiology

www.michaeltlash.com
What is *inverse classification*?

- The process of making **meaningful perturbations** to a test instance such that the probability of a desirable outcome is maximized.
What is *inverse classification*?

- The process of making meaningfull perturbations to a test instance such that the probability of a desirable outcome is maximized.
What is *inverse classification*?

- The process of making *meaningful perturbations* to a test instance such that the probability of a desirable outcome is maximized.

![Diagram](image)
What is *inverse classification*?

- The process of making *meaningful perturbations* to a test instance such that the probability of a desirable outcome is maximized.

A test instance x (e.g., student)
What is *inverse classification*?

- The process of making **meaningful perturbations** to a test instance such that the probability of a desirable outcome is maximized.
What is *inverse classification*?

- The process of making *meaningful perturbations* to a test instance such that the probability of a desirable outcome is maximized.
What is *inverse classification*?

- The process of making *meaningful perturbations* to a test instance such that the probability of a desirable outcome is maximized.
What is *inverse classification*?

- The process of making *meaningful perturbations* to a test instance such that the probability of a desirable outcome is maximized.

What about the *meaningful* part of the definition?
Well...let's visit some past work!

Meaningful Perturbations

\[
\min_x f(x)
\]

Begin with a basic formulation.
\[
\min_x f(x)
\]

[For now] A differentiable classification function e.g., logistic regression, SVM, ANN, etc.
Meaningful Perturbations

\[\min_{x} f(x) \]
Meaningful Perturbations

Segment features.
Meaningful Perturbations

\[
\min_x f(x)
\]

Some regressor

\[
H(\bar{x}_U, x_D)
\]

Some regressor

\[
H : \mathbb{R}^{|U|+|D|} \rightarrow \mathbb{R}^{|I|}
\]

Estimate indirectly changeable.
\[
\min_{\bar{x}_D} \ f(\bar{x}_U, H(\bar{x}_U, x_D), x_D) \\
\text{s.t. } \phi(x_D - \bar{x}_D) \leq B \\
\quad i; \leq x_i \leq u_i \text{ for } i \in D
\]

Update objective function. Add constraints.
Meaningful Perturbations

\[
\min_{\mathbf{x}_D} f(\bar{\mathbf{x}}_U, H(\bar{\mathbf{x}}_U, \mathbf{x}_D), \mathbf{x}_D)
\]

s.t. \(\phi(\mathbf{x}_D - \bar{\mathbf{x}}_D) \leq B \)

\(l_i \leq x_i \leq u_i \) for \(i \in D \)

\[
\phi(\mathbf{z}) = \sum_{i \in D} c_i^+(z_i)_+ + c_i^-(z_i)_-
\]

Cost-change function
Meaningful Perturbations

\[
\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D) \\
\text{s.t. } \phi(x_D - \bar{x}_D) \leq B \text{ Budget} \\
l_i \leq x_i \leq u_i \text{ for } i \in D
\]

\[
\phi(z) = \sum_{i \in D} c_i^+(z_i)_+ + c_i^-(z_i)_-
\]
Meaningful Perturbations

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$

Bounds
1. Relax assumptions about $f(\cdot)$.

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$

Assume:

- $f(z)$ differentiable
- $\|\nabla f(z) - \nabla f(z')\| \leq L \|\nabla f(z) - \nabla f(z')\|$ for $z, z' \in \mathbb{R}^{|D|}$
Main Contributions

1. Relax assumptions about $f(\cdot)$.

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$

Assume:
- $f(z)$ differentiable
- $\|\nabla f(z) - \nabla f(z')\| \leq L \|\nabla f(z) - \nabla f(z')\| z, z' \in \mathbb{R}^{|D|}$
1. Relax assumptions about $f(\cdot)$.

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$

Assume:
- $f: \mathbb{R}^p \rightarrow \mathbb{R}$

Generalized inverse classification
Main Contributions

1. Relax assumptions about $f(\cdot)$.
2. **Quadratic cost-change function.**

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$
Main Contributions

1. Relax assumptions about $f(\cdot)$.
2. **Quadratic cost-change function.**

\[
\begin{align*}
\min_{x_D} & \quad f(\bar{x}_U, H(\bar{x}_U, x_D), x_D) \\
\text{s.t.} & \quad \phi(x_D - \bar{x}_D) \leq B \\
& \quad l_i \leq x_i \leq u_i \text{ for } i \in D
\end{align*}
\]

\[
\phi(z) = \sum_{i \in D} c_i^+(z_i)_+ + c_i^-(z_i)_-
\]
Main Contributions

1. Relax assumptions about $f(\cdot)$.

2. Quadratic cost-change function.

$$\min_{x_D} f(\bar{x}_U, H(\bar{x}_U, x_D), x_D)$$

s.t. $\phi(x_D - \bar{x}_D) \leq B$

$$l_i \leq x_i \leq u_i \text{ for } i \in D$$

$$\phi(z) = \sum_{i \in D} c_i^+(z_i)^2 + c_i^- z(i)^2$$
Main Contributions

1. Relax assumptions about $f(\cdot)$.
2. Quadratic cost-change function.
3. Three real-valued heuristic optimization methods and two sensitivity analysis-based optimization methods.
 * Projection operator to maintain feasibility.
Optimization Methodology

Heuristic

- Hill Climbing + Local Search (HC+LS)
- Genetic Algorithm (GA)
- Genetic Algorithm + Local Search (GA+LS)

Sensitivity Analysis

- Local Variable Perturbation – First Improvement (LVP-FI)
- Local Variable Perturbation – Best Improvement (LVP-BI)
Experiment Decisions and Data

- $f(\cdot)$: Random forest
- $H(\cdot)$: Kernel regression
- Dataset 1: Student Performance (UCI Machine Learning Repository).
- Dataset 2: ARIC
- One f for optimization, separate f for heldout evaluation.
Results: Student Performance

![Graph showing student performance results over budget. The graph includes lines for various algorithms such as GA, HC+LS, GA+LS, LVP-BI, LVP-FI, and Std 57. The y-axis represents probability, and the x-axis represents budget. Different lines represent different algorithms, with GA shown in red, HC+LS in cyan, GA+LS in blue, LVP-BI in black dots, LVP-FI in purple, and Std 57 in green. The graph illustrates how each algorithm performs across different budget levels.]
Results: Student Performance

- Time out with friends
- Weekday alcohol consumption
- Time spent studying

[Graph showing the relationship between budget and feature change]
Results: ARIC

Need sparsity constraints
Conclusions

- **Generalized Inverse Classification**: can use virtually any learned f (as shown by experiments w/ Random Forest classifier).

- Our proposed methods were successful, although this varied by dataset.
GENERALIZED INVERSE CLASSIFICATION

SDM '17

Michael T. Lash1, Qihang Lin2, W. Nick Street2, Jennifer G. Robinson3, and Jeffrey Ohlmann2

1Department of Computer Science, 2Department of Management Sciences, 3Department of Epidemiology

www.michaeltlash.com
Causality and Inverse Classification

What we’re doing:

1. Imposing our own causal structure (DAG).
2. We’re not taking the usual counterfactual approach.

Future work will focus on incorporating causal methodology...
Causality and Inverse Classification

- Yes!
Causality and Inverse Classification

- Yes!
- What we’re doing:
 1. Imposing our own causal structure (DAG).
 2. We’re not taking the usual counterfactual approach.
Yes!

What we’re doing:

1. Imposing our own causal structure (DAG).
2. We’re not taking the usual counterfactual approach.

Future work will focus on incorporating causal methodology...