LEARNING RICH GEOGRAPHICAL REPRESENTATIONS: PREDICTING COLORECTAL CANCER SURVIVAL IN THE STATE OF IOWA

BIBM 2017

Michael T. Lash¹, Yuqi Sun¹, Xun Zhou², Charles F. Lynch³, and W. Nick Street²

¹Department of Computer Science, ²Department of Management Sciences, ³Department of Epidemiology

www.michaeltlash.com
Colorectal Cancer in Iowa

Colorectal Cancer Mortality Rate by ZCTA in Iowa: 1989 to 2013

Legend
- Iowa Mortality
- 0.0 - 0.145
- 0.145 - 0.307
- 0.307 - 0.447
- 0.447 - 0.714
- 0.714 - 1.0

created by: Michael T. Lash
Colorectal Cancer in Iowa

Colorectal Cancer Mortality Rate by ZCTA in Iowa: 1989 to 2013

Legend:
- Iowa Mortality
 - 0.0 - 0.145
 - 0.145 - 0.307
 - 0.307 - 0.447
 - 0.447 - 0.714
 - 0.714 - 1.0

created by: Michael T. Lash
Colorectal Cancer in Iowa

Colorectal Cancer Mortality Rate by ZCTA in Iowa: 1989 to 2013

Legend
- Iowa Mortality
 - 0.0 - 0.145
 - 0.145 - 0.307
 - 0.307 - 0.447
 - 0.447 - 0.714
 - 0.714 - 1.0

created by: Michael T. Lash
Colorectal Cancer in Iowa

Colorectal Cancer Mortality Rate by ZCTA in Iowa: 1989 to 2013

Legend

Iowa Mortality

- 0.0 - 0.145
- 0.145 - 0.307
- 0.307 - 0.447
- 0.447 - 0.714
- 0.714 - 1.0

created by: Michael T. Lash
Colorectal Cancer in Iowa

- **Takeaway**: Geography appears to be indicative of colorectal cancer survivability.
Colorectal Cancer in Iowa

- **Takeaway**: Geography appears to be indicative of colorectal cancer survivability.
- **Furthermore**:
 - Lead-based paint in pre-1970’s housing.
 - Rural healthcare availability.
 - Attitudes surrounding healthcare.
Problem: Predict patient-specific colorectal cancer survival curves (KMSC).
Colorectal Cancer in Iowa

- **Problem**: Predict patient-specific colorectal cancer survival curves (KMSC).
- **This work**: Does geography aid in the prediction of survival curves and do richer geographical representations produce more accurate predictions?
Censored Data & Survival Curve Re-representation

- **Data:** \(\{x^{(i)}, e^{(i)}, t^{(i)}\}_{i=1}^{n} \)
- \(e^{(i)} \in \{0, 1\} \leftarrow \text{Event indicator} \)
- \(t^{(i)} \in \{1, \ldots, T\} \leftarrow \text{Discrete time} \)
Data: \(\{x^{(i)}, e^{(i)}, t^{(i)}\}_{i=1}^n \)

\(e^{(i)} \in \{0, 1\} \leftarrow \text{Event indicator} \)

\(t^{(i)} \in \{1, \ldots, T\} \leftarrow \text{Discrete time} \)

Three different “scenarios” w.r.t. \(e^{(i)} \) and \(t^{(i)} \):

1. \(e^{(i)} = 1 \)
2. \(e^{(i)} = 0, t^{(i)} < T \)
3. \(e^{(i)} = 0, t^{(i)} = T \)
- **Re-represent** $e^{(i)}$ and $t^{(i)}$ as a vector $y^{(i)}$.
- Where $\tilde{p}_i = 1 - P \left(e^{(i)}_{\tilde{t}} = 0 | e^{(i)}_{\tilde{t}-1} = 1 \right)$

$e^{(i)} = 1$	$y^{(i)} = \begin{bmatrix} 1 \cdots 1 0 0 \cdots 0 \end{bmatrix}$
$e^{(i)} = 0$, $t^{(i)} < T$	$y^{(i)} = \begin{bmatrix} 1 \cdots 1 \tilde{p}_{\tilde{t}=t^{(i)}} \cdots \tilde{p}_{\tilde{t}=T} \end{bmatrix}$
$e^{(i)} = 0$, $t^{(i)} = T$	$y^{(i)} = \begin{bmatrix} 1 \cdots 1 1 1 \cdots 1 \end{bmatrix}$
A result

Average Actual vs Average Predicted KMSC: No Geo Feats

- ABC
- Five years
- Avg. $y \pm \frac{1}{4}$ st. dev.
- Avg. $\hat{y} \pm \frac{1}{4}$ st. dev.

Discrete Time (one unit=6 months)

Probability
Problem Formulation

\[g^* = \arg\min_{g \in \mathcal{G}} \left\{ \mathcal{L} \left(y^{(i)}, g(x^{(i)}) \right) : i = 1, \ldots, n \right\} \]

- \(\mathcal{G} \) is defined to be a neural network hypothesis set.
- **Goal:**
 - See whether the elicited \(g^* \) is better when geographical features are added.
 - See whether the elicited \(g^* \) is better when richer geographical representations are used.
Geographic Representations

- A simple binary representation (SBR).
- A rich, spectral analysis-elicited representation (RR-SA).
- Assume: Can compute discrete geographic entity-membership using original geographic features (x_z).
Geographic Representations: SBR
Geographic Representations: SBR
Geographic Representations: SBR

Input node
Hidden node
Output node
(logistic)

$X^{(i)}_{Z}$

Bin

Smooth

$\hat{y}^{(i)}$
A Quick Aside: Output Smoothing

- **Key insight**: Probability of survival never increases from \tilde{t} to $\tilde{t} + 1$.

$$\hat{y}_{\tilde{t}+1} = \min\{output_{\tilde{t}}, output_{\tilde{t}+1}\} \text{ for } \tilde{t} = 1, \ldots, T \quad (2)$$
Geographic Representations: RR-SA
Geographic Representations: RR-SA
Geographic Representations: RR-SA

- $Q_{spec} \in \mathbb{R}^{k \times p}$, where k is user-specified.
Geographic Representations: RR-SA

- Q_{spec} \in \mathbb{R}^{k \times p}, where k is user-specified.
Geographic Representations: RR-SA

\[X_{Z_i} \]

Input node
RR-SA Feats
Hidden node
Output node (logistic)

Adj
Top_k
Enrich

Smooth
\[\hat{y}(i) \]
Experiments

- Compare average cross-validation \hat{y} with average y using two different measures:
 - Mean Absolute Error (MAE)
 - Area Between Curves (ABC) — A new measure
Results: Predictions

(a) No geo feats
(ABC=14.32, MAE=0.467).

(b) SBR
(ABC=12.60, MAE=0.4512).

(c) RR-SA, \(k = 10\)
(ABC=11.41, MAE=0.446).

(d) RR-SA, \(k = 20\)
(ABC=12.31, MAE=0.453).

(e) RR-SA, \(k = 30\)
(ABC=11.65, MAE=0.445).

(f) RR-SA, \(k = 40\)
(ABC=10.77, MAE=0.442).
Results: Spectral Clustering

Spectral Clustering: k=10

Spectral Clustering: k=20

Spectral Clustering: k=30

Spectral Clustering: k=40
Conclusions

- Geographical features improve colorectal cancer survival curve predictions.
- Richer, spectral analysis-elicited features provide better predictions than simple, binary representations.
 * Predictive performance deviates at, approximately, the five-year mark:
 - Future work: Improve on these predictions by exploring other geographical representations.
LEARNING RICH GEOGRAPHICAL REPRESENTATIONS: PREDICTING COLORECTAL CANCER SURVIVAL IN THE STATE OF IOWA

BIBM 2017

Michael T. Lash1, Yuqi Sun1, Xun Zhou2, Charles F. Lynch3, and W. Nick Street2

1Department of Computer Science, 2Department of Management Sciences, 3Department of Epidemiology

www.michaeltlash.com